Astronomers observe evolution of a black hole as it wolfs down stellar material

MIT Research News

On March 11, an instrument aboard the International Space Station detected an enormous explosion of X-ray light that grew to be six times as bright as the Crab Nebula, nearly 10,000 light years away from Earth. Scientists determined the source was a black hole caught in the midst of an outburst — an extreme phase in which a black hole can spew brilliant bursts of X-ray energy as it devours an avalanche of gas and dust from a nearby star.

Now astronomers from MIT and elsewhere have detected “echoes” within this burst of X-ray emissions, that they believe could be a clue to how black holes evolve during an outburst. In a study published today in the journal Nature, the team reports evidence that as the black hole consumes enormous amounts of stellar material, its corona — the halo of highly-energized electrons that surrounds a black hole — significantly shrinks, from an initial expanse of about 100 kilometers (about the width of Massachusetts) to a mere 10 kilometers, in just over a month.

The findings are the first evidence that the corona shrinks as a black hole feeds, or accretes. The results also suggest that it is the corona that drives a black hole’s evolution during the most extreme phase of its outburst.

“This is the first time that we’ve seen this kind of evidence that it’s the corona shrinking during this particular phase of outburst evolution,” says Jack Steiner, a research scientist in MIT’s Kavli Institute for Astrophysics and Space Research. “The corona is still pretty mysterious, and we still have a loose understanding of what it is. But we now have evidence that the thing that’s evolving in the system is the structure of the corona itself.”

Steiner’s MIT co-authors include Ronald Remillard and first author Erin Kara.

X-ray echoes

The black hole detected on March 11 was named MAXI …

Read More