How to store information in your clothes invisibly, without electronics

UW News » Science

Engineering  |  News releases  |  Research  |  Science  |  Technology

October 31, 2017

Using magnetic properties of conductive thread, University of Washington researchers are able to store data in fabric. In this example, the code to unlock a door is stored in a fabric patch and read by an array of magnetometers.Dennis Wise/University of Washington

A new type of smart fabric developed at the University of Washington could pave the way for jackets that store invisible passcodes and open the door to your apartment or office.
The UW computer scientists have created fabrics and fashion accessories that can store data — from security codes to identification tags — without needing any on-board electronics or sensors.
As described in a paper presented Oct. 25 at the Association for Computing Machinery’s User Interface Software and Technology Symposium (UIST 2017), they leveraged previously unexplored magnetic properties of off-the-shelf conductive thread. The data can be read using an instrument embedded in existing smartphones to enable navigation apps.
“This is a completely electronic-free design, which means you can iron the smart fabric or put it in the washer and dryer,” said senior author Shyam Gollakota, associate professor in the Paul G. Allen School of Computer Science & Engineering. “You can think of the fabric as a hard disk — you’re actually doing this data storage on the clothes you’re wearing.”
[embedded content]
Most people today combine conductive thread — embroidery thread that can carry an electrical current — with other types of electronics to create outfits, stuffed animals or accessories that light up or communicate.
But the UW researchers realized that this off-the-shelf conductive thread also has magnetic properties that can be manipulated to store either digital data or visual information like letters or numbers. This data can be read by a magnetometer, an inexpensive instrument that measures the direction and strength of magnetic fields and is embedded in most smartphones.
“We are using …

Read More

click
tracking
Share
Share