Inspired by radiation

MIT News

Last summer, Michael Short was so determined to continue his as-yet unfunded radiation-damage experiments that he was willing to pay to use a nuclear reactor rather than delay his work. Luckily, he didn’t have to come up with the $40,000: In December, thanks to the National Science Foundation’s Faculty Early Career Development (CAREER) program, Short was awarded enough support ($640,000) to take his group’s experiments to the next level.

“Now the work begins in earnest,” says Short, an assistant professor of nuclear science and engineering. “This is the most exciting undertaking of my career. It’s what I came here to do.”

Short is resurrecting a long-neglected idea that dates back to the Manhattan Project. Back in 1944, physicists Eugene Wigner and Leo Szilard posited that radiation damage should store energy in particular materials, which was deemed “The Szilard Complication.” Short believes radiation stores energy in all materials, including metals, in a measurable way that illustrates the defects responsible for its accumulation.

His research involves measuring and simulating this stored energy using nanoscale differential scanning calorimetry (nanoDSC) and molecular dynamics (MD) to visualize the full range of defects produced during irradiation. If his work is successful, the world of nuclear science will gain an important new tool. For instance, scientists will be able to definitively measure whether critical components in a nuclear reactor will remain intact in the coming years, or if they are more likely to break during an accident. “If you can predict that with confidence, you can use the same reactor and make more power without having to build another one,” says Short.

As a 14-year-old from Swampscott, Massachusetts, Short was introduced to the MIT campus for the first time by friends in his high school math team. From keen high school student taking summer classes, to undergraduate, to PhD student, to postdoc, to research scientist, to …

Read More