Microfluidic Molecular Exchanger Helps Control Therapeutic Cell Manufacturing

Science and Technology

Science and Technology

Microfluidic Molecular Exchanger Helps Control Therapeutic Cell Manufacturing

October 10, 2018
• Atlanta, GA

Click image to enlarge

Georgia Tech graduate research assistant Mason Chilmonczyk examines a device after a plasma etch step in a reactive ion etching tool. The work was being done in the Institute of Electronics and Nanotechnology’s Marcus Building clean room. (Credit: Rob Felt, Georgia Tech)

Researchers have demonstrated an integrated technique for monitoring specific biomolecules – such as growth factors – that could indicate the health of living cell cultures produced for the burgeoning field of cell-based therapeutics. 

Using microfluidic technology to advance the preparation of samples from the chemically complex bioreactor environment, the researchers have harnessed electrospray ionization mass spectrometry (ESI-MS) to provide online monitoring that they believe will provide for therapeutic cell production the kind of precision quality control that has revolutionized other manufacturing processes. 

“The way that the production of cell therapeutics is done today is very much an art,” said Andrei Fedorov, Woodruff Professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “Process control must evolve very quickly to support the therapeutic applications that are emerging from bench science today. We think this technology will help us reach the goal of making these exciting cell-based therapies widely available.”

By measuring very low concentrations of specific compounds secreted or excreted by cells, the technique could also help identify which biomolecules – of widely varying sizes – should be monitored to guide the control of cell health. Ultimately, the researchers hope to integrate their label-free monitoring directly into high-volume bioreactors that will produce cells in quantities large enough to make the new therapies available at a reasonable cost and consistent quality.

Development of the Dynamic Mass Spectrometry Probe (DMSP) was supported by the National Science Foundation (NSF) Engineering Research Center for Cell Manufacturing Technologies (CMaT), which is headquartered at …

Read More

click
tracking
Share
Share