New study examines where and how climate change is altering species

A new study shows how and where changing climate conditions could affect the communities of species in any given area. In the Rocky Mountains, changes in temperature and precipitation could push species up or down slope. Photo: National Park Service/Charles M. Sauer

Like a casino dealer shuffling the deck, climate change is starting to reorder species from the grasslands of Argentina to ice-free areas of Greenland.
New research published Monday (Sept. 19) in the journal Nature Climate Change by researchers at Aarhus University in Denmark and the University of Wisconsin–Madison illuminates where and why novel species combinations are likely to emerge due to recent changes in temperature and precipitation. The study includes global maps of novelty that offer testable predictions and carry important implications for conservation and land management planning.
For instance, the findings suggest that novel species associations are likely to form in the North American Great Plains and temperate forests, the Amazon, South American grasslands, Africa and boreal Asia due to recent climate change, and will likely expand as climate novelty increases.

Jack Williams

With global temperatures expected to increase by 2.5-8 degrees Fahrenheit by the end of this century — compared to the roughly 1.5 degrees of global warming experienced over the last century — the authors predict the widespread reshuffling of species into new communities, as species abundances and distributions change.
“We’re identifying three distinct ways that climate change can lead to community reshuffling,” says study co-author John “Jack” Williams, a UW–Madison professor of geography and director of the Nelson Institute Center for Climatic Research.
One mechanism is climate novelty, in which new climates emerge with no historic equivalent. Some species are already adapted to these new climates while others are not.
Another is the speed of climate change, which may cause shuffling among species that vary in their ability to track with the pace of …

Read more