On the Origins of Star Stuff: HAWC collaboration sheds light on origin of anti-matter

Michigan Tech ‘Latest News’

Michigan Tech team and others use a high-altitude observatory in Mexico to better understand where gamma rays come from.

A mountaintop observatory about four hours east of Mexico City, built and operated by an international team of scientists, has captured the first wide-angle view of gamma rays emanating from two rapidly spinning stars. The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory offers perspective on the very high energy light streaming from our stellar neighbors and casts serious doubt on one possible origin for a mysterious excess of anti-matter particles near Earth.
In 2008, a space-borne detector measured an unexpectedly high number of positrons—the anti-matter cousins of electrons—in orbit. Ever since, scientists have debated the cause of the anomaly, split over two competing theories of its origin. Some suggested a simple explanation: The extra particles might be coming from nearby collapsed stars called pulsars, which spin around several times a second and throw off electrons, positrons and other matter with violent force. Others speculated that the extra positrons have an exotic origin, perhaps coming from as-yet undetected processes involving dark matter—the invisible but pervasive substance seen so far only through its gravitational pull.
“This new measurement is tantalizing because it strongly disfavors the idea that these extra positrons are coming to Earth from two nearby pulsars, at least when you assume a relatively simple model for their propagation,” says Jordan Goodman, professor of physics at the University of Maryland and the lead investigator and US spokesperson for the HAWC collaboration. “Our measurement doesn’t decide the question in favor of dark matter, but any new theory that attempts to explain the excess using pulsars will need to match the new data.”
Using this new data from the HAWC observatory, researchers made the first detailed measurements of two pulsars previously identified as possible sources of the excess. By catching and counting …

Read More

click
tracking
Share
Share