Project Will Provide Reaction Kinetics Data for Deterministic Synthesis of Metallic Nanocrystals

Science and Technology

Science and Technology

Project Will Provide Reaction Kinetics Data for Deterministic Synthesis of Metallic Nanocrystals

December 26, 2017
• Atlanta, GA

Click image to enlarge

Comparison of the activation energies involved in the autocatalytic surface reduction for the growth of palladium nanocrystals. (Credit: Xia laboratory, Georgia Tech)

Researchers have published the first part of what they expect to be a database showing the kinetics involved in producing colloidal metal nanocrystals – which are suitable for catalytic, biomedical, photonic and electronic applications – through an autocatalytic mechanism. 

In the solution-based process, precursor chemicals adsorb to nanocrystal seeds before being reduced to atoms that fuel growth of the nanocrystals. The kinetics data is based on painstaking systematic studies done to determine growth rates on different nanocrystal facets — surface structures that control how the crystals grow by attracting individual atoms. 

In an article published December 11 in the journal Proceedings of the National Academy of Sciences, a research team from the Georgia Institute of Technology provided a quantitative picture of how surface conditions controlled the growth of palladium nanocrystals. The work, which will later include information on nanocrystals made from other noble metals, is supported by the National Science Foundation.

“This is a fundamental study of how catalytic nanocrystals grow from tiny seeds, and a lot of people working in this field could benefit from the systematic, quantitative information we have developed,” said Younan Xia, professor and Brock Family Chair in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “We expect that this work will help researchers control the morphology of nanocrystals that are needed for many different applications.”

A critical factor controlling how nanocrystals grow from tiny seeds is the surface energy of the crystalline facets on the seeds. Researchers have known that energy barriers dictate the surface attraction for precursors in solution, but specific information on the energy barrier for each …

Read More

click
tracking
Share
Share