UW, Purdue scientists solve structure of cold virus linked to childhood asthma

News The atomic structure of an elusive cold virus linked to severe asthma and respiratory infections in children has been solved by a team of researchers at the University of Wisconsin–Madison and Purdue University.
The findings are published this week in the Proceedings of the National Academy of Sciences (PNAS) and provide the foundation for future antiviral drug and vaccine development against the virus, rhinovirus C.
“Rhinovirus C has been the ‘missing link’ in explaining illness caused by the common cold,” says Michael Rossmann, Hanley Distinguished Professor of Biological Science at Purdue and co-lead of the study with UW–Madison’s Ann Palmenberg, professor of biochemistry and with the Institute for Molecular Virology. “This is sure to spark major new efforts toward the development of vaccines and antiviral drugs, particularly for the prevention of asthma.”

Ann Palmenberg

Michael Rossmann

In fact, multiple pharmaceutical companies have been waiting for the data, Palmenberg says.
Rhinovirus C is resistant to current antiviral drugs and no vaccines exist. It was discovered just 10 years ago and health experts believe it is responsible for 50 to 85 percent of all childhood hospitalizations for asthma.
Asthma affects an estimated 24 million people in the U.S. and asthmatic children infected with rhinovirus C have been shown in previous studies to have more severe asthma symptoms.
Rhinovirus C infections are also a major contributor to poor outcomes for people with chronic lung conditions like cystic fibrosis, and early exposure to the virus can cause lifelong lung scarring leading to persistent respiratory difficulties later, says Palmenberg.
Last fall, using a rhinovirus C preparation grown in the Palmenberg lab — currently one of the few places in the world capable of culturing the virus — and an imaging technology new to Purdue, Rossmann’s graduate student, Yue Liu, first author of the study, was able …

Read more